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Oscillatory reactive dynamics on surfaces: A lattice limit cycle model
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Complex reactive dynamics on low-dimensional lattices is studied using mean-field models and Monte Carlo
simulations. Alattice-compatiblereactive scheme that gives rise to limit cycle behavior is constructed, involv-
ing a quadrimolecular reaction step and bimolecular adsorption and desorption steps. The resulting lattice limit
cycle model is dissipative and, in the mean-field limit, exhibits sustained oscillations of the species concen-
trations for a wide range of parameter values. Lattice Monte Carlo simulations of the lattice limit cycle model
show locally the emergence of sustained oscillations of the species concentrations. Random fluctuations of the
concentrations, clustering between homologous species, and competition between the various clusters/species
cause the in-phase oscillations of neighboring sites. Distant regions oscillate out of phase and spatial correla-
tions decay exponentially with the distance. The amplitude and period of the local oscillations depend on the
system parameters.
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I. INTRODUCTION

When reactive processes are taking place on lo
dimensional supports, the usual mean-field~MF! description
may become questionable in the sense that the MF does
reproduce the observed behavior when the underlying mi
scopic processes are properly incorporated. This indicate
intricate coupling between the microscopic level and the c
lective behavior described by the macrovariables. Such
viations from the standard description of chemical kinet
have been detected in low-dimensional regular lattices, f
tal aggregates or catalytic surfaces@1#, or for diffusion-
limited reactions in low dimension@2,3#. The origin of these
phenomena is to be found in the spontaneous developme
inhomogeneous fluctuations that are enhanced by the
stricted geometry of the support.

In the case of irreversible surface reactions, the spa
restrictions due to the support coupled to the nonlinear c
acter of the reactive processes may induce substantial d
tions from MF. During the last two decades, numerical mo
els have been proposed to explore the mesoscopic beh
of such systems@4–13# and new experimental results hav
been obtained@14–18#. Some of these studies are based
the minimal Monte Carlo model describing the catalytic o
dation of CO on Pt that was introduced by Ziffet al. in 1986
@4–9#. Along the same lines are simulations with surfa
restructuring@10,11# and superlattice ordering@9#. Similarly,
the NO reduction on Pt has been studied using lattice
models@12# on substrates with different properties@13#. All
these studies predict the appearance of complex local
terns, poisoning transitions, and periodic or chaotic osci
tions.

To understand the effects induced by the microscopic
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namics at the macroscopic level, one can study more spe
cally the role of the reactive dynamics on the global beh
ior, and consider the limit in which the reactant mobility
neglected. In this case, nontrivial effects of space dimens
ality have been detected for various types of nonlinear kin
ics, showing important discrepancies from MF predictio
@19–22#.

The emergence of instabilities seems thus to be hig
sensitive to the substrate dimensionality and geometry wh
the reactive processes take place. In particular, for lo
dimensional instabilities questions arise as to the persiste
of unstable states and to their coupling with the spontane
spatial organization induced by the restricted geometry. T
aim of this paper is to study the complex behavior associa
to the development of alimit cycle on lattices. Coupling
nonlinear oscillators in space automatically perturbs
phases of the local oscillators. This may give rise to destr
tive interference effects, resulting in the wiping out of th
global oscillatory behavior on a macroscopic scale. This
precisely what has been observed in one-dimensional~1D!
spatially extended continuous media, where the desynchr
zation of the local oscillators may lead to the disappeara
of the global oscillations@23,24#.

To set up reactive lattice dynamics that exhibit comp
phenomena, lattice compatibility conditions need to be
dressed. The nonlinear reactive scheme involves at least
active chemical species. The nonequilibrium conditions
typically associated with adsorption and desorption mec
nisms. This forces one to consider lattices with empty act
sites, mimicking open reactive systems. Concomitantly
conservation condition between adsorbed particles and
sites has to be fulfilled. The flux between the surface and
surrounding gas yields thus a specific structure of the kin
equations, which has no analog in the fluid-phase mac
scopic formulation. These features require developing s
cific kinetic models already at the MF level. The mesosco
description that incorporates the lattice structure is then e
©2002 The American Physical Society19-1
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ily implemented using Monte Carlo simulation techniqu
@4–9#.

Along these lines, two of the present authors have pre
ously introduced a lattice generalization of the Lotk
Volterra model under nonequilibrium conditions. The ne
model was called the ‘‘lattice Lotka-Volterra’’~LLV ! model
@25#. The LLV model corresponds to an open reactive syst
involving bimolecular steps representing reactio
adsorption/influx, and desorption/outflux. Only two acti
speciesX1 , X2, and free sitesS participate in this scheme,

X11X2→
k1

2X2 , ~1a!

X11S→
k2

2X1 , ~1b!

X21S→
k3

2S, ~1c!

Specifically, the lattice compatibility requirement dictat
that particlesX1 andX2 may undergo the autocatalytic tran
formation~1a! when they are found in adjacent positions
the lattice. An empty siteS may adsorb a particleX1, pro-
vided that there is anotherX1 in a neighboring site~1b!;
while a particleX2 may desorb leaving an empty siteS pro-
vided that there is another empty siteS in the neighborhood
~1c!. For the LLV model, the MF description predicts a co
tinuum of periodic oscillations whose frequency is fixed
the initial conditions. The lattice dynamics shows a radica
different behavior. Especially, on 1D lattice oscillations a
suppressed altogether@25,26#. However, on 2D supports, th
system naturally selects a preferred frequency dependin
the intrinsic parameters and on the lattice geometry@25,27#.

Global and coherent oscillations are frequently obser
in catalytic reactions on metallic supports@16–31#. Different
mechanisms could be involved in this phenomenon, suc
a coupling between the chemical process and a struc
transformation of the metallic surface. Here we shall inv
tigate the effects produced by a purely reactive process.
will see that the intrinsic nonlinearities are sufficient to su
tain oscillations on a lattice without referring to any ext
mechanism. Moreover, this study allows us to investigat
and how the Hopf bifurcation is realized on low-dimension
systems.

To study the development of oscillatory instabilities tri
gered by lattice dynamics, we introduce in the following se
tion the lattice limit cycle ~LLC! model that involves a
strong autocatalytic step coupled with adsorption and des
tion processes. The phase space of the LLC model is in
tigated for the parameter ranges where the dissipative p
odic motion is exhibited. In Sec. III, Monte Carl
simulations on square lattice are presented. This outl
how the MF behavior is modified when the process is re
ized on a low-dimensional support. The effects of local flu
tuations are also discussed. In Sec. IV, quantitative statis
features of the MC results are presented, such as the
quency of oscillations, clustering, and spatial organizati
The main results of this work are summarized in the c
cluding section and new perspectives are suggested.
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II. MODEL AND MEAN-FIELD BEHAVIOR

In the early 80s, Aris and co-workers@32,33# have ex-
plored the possibility of obtaining sustained oscillations
surface reactions as resulting from the intrinsic nonlineari
of the reactive processes. They have shown that a bimol
lar Langmuir-Hinshelwood surface reaction with two emp
sitesS in its reaction step (Aads1Bads12S→4S1Pg), non-
equilibrium conditions associated with the adsorption st
(Ag1S
Aads;Bg1S
Bads), and coverage independent p
rameters may lead to sustained oscillatory reaction rates.
subscripts ‘‘ads’’ and ‘‘g’’ denote adsorbed and gaseou
phases, respectively. It appears that the two empty sites in
reaction step induce a strong nonlinearity that plays the
sential role in the emergence of the oscillations. In t
model, the limit cycle is characterized by a small basin
attraction. Because of the smallness of the oscillations
plitude, the oscillatory behavior is very sensitive to any p
turbation. In this respect, this model is not a good candid
for a mesoscopic description which includes fluctuations.

In a heterogeneous catalysis the so-called vacancy mo
have been proposed to describe the oscillations observe
the various reduction reactions of NO on Pt surfaces@16#.
These processes are typically associated with the use
production of vacant sites. For instance, in the NO1CO re-
action, the dissociation of adsorbed NOads into Nadsand Oads
requires the presence of one empty siteS @28#. With the
formation and subsequent desorption of the gaseous prod
N2 and CO2 three sites are liberated. In this case, the str
tural transformation of the support is not essential for p
ducing oscillations. In the NO1H2 reduction, the reactive
step involves three active chemical species and one va
site @30,31#. Thus reaction steps involving both the reacta
and the vacant sites are thus representative of some he
geneous catalytic processes. To arrive to a tractable m
~containing a minimal number of representative variabl!
describing such systems, starting from the full mechanism
drastic reduction is often adopted. The reaction steps ma
longer be elementary but represent rather contractions of
eral elementary reactive processes which are excepted t
fast or negligible as compared to the others. Moreover t
strongly depend on the specific type of surface reaction
on the prevailing experimental conditions.

Here we are interested in the generic reactive mechani
underlying the onset of oscillatory behavior in a lattice. F
this purpose, we construct a minimal model exhibiting rob
sustained oscillations that may be exhaustively studied at
MF level and easily implemented on a lattice. This will allo
us to analyze the influence of the intrinsic nonlinear behav
and disentangle it from other factors such as diffusion, str
tural transformation of the substrate or lateral interactio
This will help to clarify how the breakdown of the tempor
symmetry induced by the limit cycle is affected by the spa
restrictions of the support.

We consider three different speciesX1 , X2, andS under-
going the following reactions:

2X112X2→
k1

3X21S, ~2a!
9-2
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X11S→
k2

2X1 , ~2b!

X21S→
k3

2S. ~2c!

This scheme is quite similar to the lattice Lotka-Volter
model, except that the reaction step is quadrimolecular.
already pointed out, this strong nonlinearity plays the driv
role in the oscillation mechanism. The constraints aris
from the underlying lattice have been incorporated, in or
to secure conservation of the total number of sites. One
the species, sayS, will eventually represent the empty lattic
sites.

The speciesX1 and X2 may undergo the autocatalyti
transformation~2a! once on the surface. Specifically, w
stipulate that when a configuration of four nearest-neigh
sites contains 2X1 and 2X2, oneX1 particle is transformed in
X2 and the other one desorbs leaving the corresponding
vacant. The step~2b! represents cooperative adsorption o
particleX1 on an empty siteS, provided that another particl
X1 is found on a neighboring site. Similarly, step~2c! stands
for the cooperative desorption of a particleX2, leaving an
empty siteS, provided that there is another free site in
immediate vicinity. The resulting scheme describes an o
nonlinear reactive system submitted to influx ofX1 and out-
flux of X2. The constantsk1 , k2, andk3 represent the reac
tion rates.

The rate~or mean-field! equations associated with th
scheme read

dx1

dt
522k1x1

2x2
21k2x1s,

dx2

dt
5k1x1

2x2
22k3x2s, ~3!

ds

dt
5k1x1

2x2
22k2x1s1k3x2s.
th

in
-

is
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The conservation conditionx11x21s5const is automati-
cally satisfied. In the sequel the constant will be chosen eq
to one, corresponding to the interpretation ofx1 , x2, ands as
fractions of the overall lattice, respectively, occupied byX1
and X2 particles or being empty. By eliminatings(512x1
2x2), one obtains the reduced system

dx1

dt
522k1x1

2x2
21k2x1~12x12x2!,

dx2

dt
5k1x1

2x2
22k3x2~12x12x2!. ~4!

This reduced system admits four steady state solutions:

P15~0;0! ~empty lattice!, ~5a!

P25~0;1! ~ lattice poisoned byX1!, ~5b!

P35~1;0! ~ lattice poisoned byX2!, ~5c!

P45SA3 k3
2

k1k2
@11K#1A3 k3

2

k1k2
@12K#;A3 k2

2

8k1k3
@11K#

1A3 k2
2

8k1k3
@12K# D , ~5d!

where the constantK is only a function of the three reactio
rates:

K5A~2k31k2!3

27k1k2k3
11. ~6!

To investigate the structure of the phase space near
fixed points, we perform a standard linear stability analys
The Jacobian matrix of the system has the form
@J#5F24k1x1x2
21k2~122x12x2! 24k1x1

2x22k2x1

2k1x1x2
21k3x2 2k1x1

2x22k3~12x122x2!
G , ~7!
oint
o

ifold
es
y

pace
er
and
wherex1 andx2 take their stationary values~5a!, ~5b!, ~5c!,
or ~5d!.

The phase portrait around the four fixed points has
following shape:

~1! The eigenvalues associated with the first fixed po
P1 are l15k2 and l252k3. The corresponding eigenvec
tors aree15(1;0) ande25(0;1), respectively.P1 is thus a
saddle for all physically acceptable~positive! values of the
parametersk1 , k2, and k3. The attractive manifold directs
along the axisx2 and the repelling manifold is along the ax
x1 ~see Fig. 1!.
e

t

~2! The eigenvalues associated with the second fixed p
P2 arel150 andl25k3. The eigenvector corresponding t
l2 is e5(0;1). The phase portrait in the vicinity of this
point has no robust character. There is an unstable man
along the axisx2 and there is no stable manifold. Trajectori
tend to the fixed pointP2 from the right side, and move awa
from it from the left side~see Fig. 1!. Infinitesimal changes
in the system equations shifts the eigenvaluel150, which
can become positive or negative. As a result the phase s
portrait is modified near this point, which can become eith
saddle or unstable node. However, it remains unstable
9-3
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the state that corresponds to this fixed point~the speciesX2
occupy the whole lattice! cannot be observed.

~3! The eigenvalues associated with the fixed pointP3 has
one zero eigenvaluel150 and a second eigenvaluel25
2k2 with corresponding eigenvectore5(1;0). The phase
portrait near this fixed point is again not robust. It has
stable manifold along the axisx1 and has no unstable man
fold. Trajectories tend to the point from the bottom (x2
,0) and move away from the point from the top (x2.0)
~Fig. 1!. As for the fixed pointP2 infinitesimal changes o
the dynamical scheme can change the phase space po
nearP3, which can become saddle or stable node. Hence
such situations where fluctuations drive the system, the s
relating to this fixed point~the moleculesX1 occupy the
whole lattice! can be observed since it can become stabl

FIG. 1. Phase portrait of the lattice limit cycle model.

FIG. 2. LLC bifurcation diagram in the parameter space (k1 ,k2)
for a constant value ofk350.8.
03621
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~4! P4 is a nontrivial fixed point where bothX1 and X2
species are present on the lattice. Contrary to pointsP1 ,P2,
andP3, the location of this fixed point and its type depen
on the values of the parameters. Depending on the par
etersk1 , k2, and k3 this point can be:~a! stable node,~b!
stable focus, or~c! unstable focus. In Fig. 2, the bifurcatio
diagram in the parameters plane (k2 ,k1) at fixed value of
k350.8 is presented. Under the dashed lineP4 is a stable
node. On the dashed line both eigenvalues become equa
above the dashed line they are complex conjugate. There
fixed point becomes a stable focus. On the solid line the
parts of these eigenvalues become positive, and the equ
rium undergoes the supercritical Hopf bifurcation. As a
sult, P4 becomes an unstable focus and in its vicinity a sta
limit cycle appears.

When the focusP4 loses its stability, periodic oscillation
of the concentrationsx1 andx2 are observed in the system
At the moment of their creation, periodic oscillations ha
infinitesimal amplitude and their form is harmonic~Fig. 3,
solid lines!. With gradual parameter changing the amplitu
of the oscillations increases and their form becomes non
monic. For larger values of the parameterk1 the amplitude of
the oscillations becomes close to 0.5 and the form of
limit cycle is trianglelike~Fig. 3, dashed lines!. The behavior
of the system is characterized by long residences near
equilibrium P3 followed by short bursts away from it. From

FIG. 3. ~a! LLC phase portraits and~b! evolution of theX1

coverage as a function of time for two different values of the p
rameterk1510 ~solid line! and k15300 ~dashed lines!. The other
parameter values remain fixed:k250.5 andk350.8.
9-4
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the reaction point of view the concentration ofX1 stays very
close to 1 for a long time, then during the bursts it decrea
approximately to zero. In Fig. 4, the dependence of the
riod of the oscillations on the parametersk1 is presented. In
the same plot the black circles represent the period of sm
oscillation at the point of appearance of the limit cycle. U
limited increase of the period is observed, following appro
mately a linear law.

III. MONTE CARLO LATTICE SIMULATIONS

In the preceding section, we have shown that the L
scheme produces sustained oscillations at the MF level
seems to be a good candidate for keeping the same beh
when implemented on the lattice. The lattice simulations
designed to emulate the ‘‘microscopic’’ picture where ea
particle reacts locally with a finite number of neighbors
the surface and not with the mean field of all the particles
implicitly assumed in the usual kinetic description. We a
sume the existence of a hard core not allowing more than
reacting particle to be at the same lattice node and s
range interactions. The mesoscopic approach accounts
for the random and local nature of the reactive process.

In the limiting case of 1D support, the quadrimolecu
step~2a! is not realizable: only the trivial frozen steady sta
(P3), corresponding to lattice poisoned byX1, can be
reached. For 2D square lattices, each site has four ne
neighbors and thus all three reaction steps are allowed.
minimum dimensionality of the substrate should thus
equal to 2. In the simulations all the reactants are immo
on the lattice and diffusion effects are not considered.

The Monte Carlo~MC! algorithm on a two-dimensiona
square lattice is summarized by the following steps:

~i! Initially the lattice is filled at random with particle
X1 , X2 according to a given initial condition. The lattice ma
also contain empty sitesS.

~ii ! At every elementary MC step, one lattice site is ch
sen at random.

~iii ! If the chosen site is occupied by a particleX1 and if
amongst its four nearest neighbors two particles of typeX2

FIG. 4. Oscillation period as a function of the parameterk1 in
the mean-field model for various values ofk2 andk3.
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and one particle of typeX1 are found then reaction~1a! takes
place: the chosen siteX1 and its neighbor occupied byX1 are
replaced by an empty siteS and a particleX2, respectively,
with reaction probabilityp15k1 /(k11k21k3). The algo-
rithm then returns to stage~ii ! for a new step to start.

~iv! If the chosen site contains anX2 particle and a ran-
domly chosen neighbor is free, thenX2 desorbs and the site
is vacated with probabilityp35k3 /(k11k21k3). This is the
realization of the desorption process~1c!. The algorithm re-
turns to stage~ii !.

~v! If the chosen node is empty,S, and a randomly chosen
neighbor contains anX1 particle then a secondX1 adsorbs on
the S site with adsorption probabilityp25k2 /(k11k2
1k3). This is the realization of the adsorption process~1b!.

~vi! In all other cases the lattice remains unchanged.
~vii ! The algorithm returns to stage~ii ! for a new reaction

event to start.
The time unit in the MC procedure is defined as the nu

ber of elementary MC steps equal to the total number
lattice sites. If the linear size of the system isL, then in one
MC time unit (L3L) attempts of reactive events take plac

As working parameter set for the simulations the rate c
stantsk1530, k250.5, andk350.8 are chosen for which, a
the MF level, the limit cycle presents a reasonably exten
basin of attraction as seen in Fig. 5. The reaction probab
ties for each step arep150.9585, p250.0160, andp3
50.025 56. In the MC simulations the actual reactivity
greatly limited by the environment and the global reactiv
rate A, defined asA5 ~number of efficient reactions!/
~number of MC steps!, is of the order of 0.004 for this choic
of parameters. In Fig. 5, the global concentrations of p
ticles X1 ~solid line! and X2 ~dashed line! as a function of
time are plotted, for a square lattice of size 29329. Sus-
tained oscillations are observed as predicted from the

FIG. 5. Temporal evolution of theX1 ~solid line! andX2 ~dashed
line! coverages on a two-dimensional square lattice as obtaine
Monte Carlo simulations: system size is 29329. For comparison
the dotted line represents the temporal evolution ofX1 on a smaller
system of size 28328. Parameter values:k1530, k250.5, andk3

50.8 in all cases.
9-5



id

m

e
th
er
re
s
tiv
s

ts

-

ra

t-
st
ve

le
d
on

I
t
o

e-
ro

er

ib

al

i-

ge
.
tly,

the
rep-
y

e

ace,

of
-
size

the

m
s
n
er-
ge

utu-

e-

nd

n-

nd

tra-

-
t is

in
n

A. V. SHABUNIN, F. BARAS, AND A. PROVATA PHYSICAL REVIEW E66, 036219 ~2002!
description. These oscillations are robust under a w
choice of initial conditions.

The influence of the system size is illustrated in the sa
figure with the time dependence ofX1 coverage. The solid
line corresponds to a 29329 lattice, while the dotted line
corresponds to a 28328 one. Although the system siz
changes by a factor of 4, the amplitude and frequency of
global oscillations do not vary significantly. To test furth
the development of the oscillations we focus on the sub
gions of the original system and record data simultaneou
both for the total system and for the subregion. Compara
results are presented in Fig. 6. The solid line correspond
the time evolution of the concentration ofX2 on the entire
lattice of size 29329 sites, while the dashed line represen
the time evolution ofX2 in a small sublattice of size 25

325. A difference in the amplitude of oscillations is ob
served between the subregion~larger amplitude of oscilla-
tions! and the entire system~smaller amplitude!.

As the system size increases and exceeds a given pa
eter dependent threshold,~the linear lengthLth.211 for the
working parameter set!, global oscillations are hardly detec
able and the system, at first sight, reaches a steady
characterized by constant global concentrations. Howe
careful examination of subregions of sizel 3 l ( l ,Lth)
shows that oscillatory behavior is still highly observab
within the system, as was also indicated in Fig. 6. This in
cates that locally the system is coherent and small regi
neighborhoods intercommunicate and oscillate inphase.
stead, distant regions are out of phase and when
ensemble on all local oscillators is considered, the local
cillatory behavior is masked.

The development of the local oscillations is directly r
lated to the difference in the time scales of the three p
cesses~2a!, ~2b!, and~2c!, and to the autocatalytic charact
of the chemical scheme. The creation of oneX2 particle re-
quires the presence of twoX2 particles and twoX1 in an
immediate neighborhood. This makes the reaction poss
only at the borders betweenX1 regions andX2 regions. Un-

FIG. 6. Temporal evolution of theX1 and X2 coverages for a
square lattice 29329 ~solid line! and for a sublattice 25325

~dashed line!. Same parameters as in Fig. 5.
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der reaction~2a!, the X2 regions propagate throughX1 do-
mains. Once a smallX2 cluster appears, due possibly to loc
fluctuations, it propagates fast within theX1 regions because
of the relatively large value of the kinetic constantk1. Con-
comitantly, from the interior of this growing cluster ind
vidual X2 particles will start desorbing according to Eq.~2c!.
The desorption process is slower than the growth of theX2
clusters. Eventually the desorption of internalX2 particles
depletes slowly the cluster interiors. When sufficiently lar
empty regions are produced,X1 particles can be deposited
This adsorption process takes place relatively infrequen
due to the autocatalytic nature of the process~2b! and the
small value of the kinetic constantk2. Once theX1 regions
thus produced come into contact withX2 regions the same
oscillatory scenario is repeated.

The different steps of this process are illustrated in
three snapshots of Fig. 7. The black sites and gray sites
resent theX2 and theX1 particles, respectively. The empt
sites are depicted in white. Figure 7~a! corresponds to the
beginning of cluster formation. In Fig. 7~b! the clusters are
extending. We note that theX2 particles are distributed at th
borders of growing empty surfaces. Figure 7~c! shows that
the clusters cover progressively a large extent of the surf
whereupon destruction starts in their interior andX1 particles
start to adsorb formingX1 clusters.

From the previous discussion it is evident that the size
the oscillatory regionsR depends on the competition be
tween the three processes and on their relative rates. The
R can change, grow or shrink, by appropriately changing
relative velocities. Alternatively, the values ofk1 , k2, andk3
determine the maximum cell sizeR, within which the par-
ticles ‘‘intercommunicate,’’ oscillating in phase. If the syste
size is smaller than or equal toR, the entire system behave
as a single oscillator. The systems of size greater thaR
contain more than one oscillators and thus negative ‘‘int
ference’’ phenomena take place. In the limit of very lar
systems of sizesL.Lth.R, many oscillators with different
phases are randomly distributed and their phases are m
ally cancelled.

As the value ofk1 increases relatively tok2 and k3, the
behavior is characterized by abrupt ‘‘bursts’’ and slower d
cays ofX2 ~and similarly forX1 andS). However, this effect
is only local, while globally the oscillations are smooth a
statistically symmetric. In Fig. 8 the concentrations ofX2 are
presented as a function of time for rate constantsk15300,
k250.5, andk350.8. The solid line corresponds to conce
tration over the entire lattice of size 29329, while the
dashed line corresponds to a sublattice of size 25325. While
in the entire lattice the oscillations are relatively smooth a
symmetric, in the sublattice~dashed line! the oscillations be-
come nonsymmetric: for some time the sublattice concen
tion of X2 builds up abruptly, while the concentration ofX1
~not shown! decays slowly, thenX1 spends sometime ap
proaching zero and then suddenly bursts up. This effec
predicted globally by the MF~see Fig. 3, dashed lines!. The
comparison of the sublattice oscillations~dashed lines! in
Figs. 6 and 8 shows that in the former case (k1530) the
sublattice oscillations are statistically symmetric, while
the latter (k15300) they have triangular form. This is i
9-6
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agreement with the MF results~Fig. 3, dashed lines! indicat-
ing that ask1 increases the form of the oscillations chang
gradually from the symmetric, nearly harmonic shape
wards the triangular form. Finally, when the relative velo

FIG. 7. Three different stages of cluster growth and destruc
for a lattice of size 28328. Snapshots~a!, ~b!, and~c! correspond to
times t5215, 285, and 355~in MC units!, respectively. Same pa
rameters as in Fig. 5.
03621
s
-

ties ki ’s become of the same order of magnitude, then
regions of ‘‘intercommunication’’ shrink and either a simp
statistical steady state is reached or even a frozen sta
reached.

IV. QUANTITATIVE DESCRIPTION

To interpret the spatial organization and temporal coh
ence revealed in the preceding section, we evaluate the
tistical properties of the datasets generated by the MC si
lations.

As a useful indicator for clustering we consider th
nearest-neighbor covarianceV(t) @25#,

V~ t !5
1

Ld (
rW

s rW~ t !s rW1eW~ t !, ~8!

whererW represents a given lattice site (i , j ), eW is the set of
first neighbors ofrW, ands rW(t) denotes the state of siterW at
time t. The variables takes the values 0, 1, or21 whenever
the siterW contains a particle of the typeS, X1, or X2, respec-
tively.

It is easy to show that for a uniform random distributio
with equal mean coverage 1/3, without clustering effects,
nearest-neighbor covariance is, on the average, equal
Indeed, the products rW(t)s rW1eW(t) can only take the values 0
1, or 21. For random lattices the value ofs on site rW is
independent of the valuerW1eW . Thus the product takes th
value 0 with probability 5/9, the value 1 with probability 2/9
and the value21 with probability 2/9. Consequently, for
large random distribution ofX1 , X2, andS the sum of all the
products is equal to zero.

When clustering takes place, most of the sites in a cer
neighborhood~cluster! have the same sign, thus the cont
bution to the sum~8! within clusters is positive. The negativ

n

FIG. 8. Temporal evolution ofX2 coverage for parameter value
k15300, k250.5, andk350.8. On a large lattice 29329 ~solid
line!, smooth oscillatory patterns are observed, while locally, o
sublattice of size 25325, sudden bursts followed by slow decay
are observed.
9-7
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contribution appears only in the interface betweenX1 andX2
clusters. In Fig. 9, the covarianceV(t) is presented as a
function of time, for a system of size 28328 sites and kinetic
constantsk1530, k250.5, andk350.8. At the beginning of
the simulation, one starts with a completely random sys
and as expected the value ofV(t) is close to zero. The initia
deviation from the value 0, in Fig. 9 is attributed to rando
fluctuations. As the time increases the clusters ofX2 form
and thusV(t) increases reaching values as high as 0.7.
system passes sequentially from a state of high clusterin
a state of low clustering, where the functionV(t) takes val-
ues as small as 0.2. Note that clusters of empty sites do
contribute to the value ofV(t). The overall shape ofV(t)
presents the same oscillatory characteristics as the fract
coverage. This behavior ofV(t) suggests that neighborin
particles should oscillate in phase. As we will see shortly~cf.
Fig. 11!, the correlation length actually covers several lay
of neighbors and thus nearest neighbors perform similar
tion.

To characterize the temporal coherence within the syst
the coarse-grained normalized time-correlation funct
C(t) is considered,

C~t!5
1

N(
t i51

N
1

^dz l
2&

@z l~ t i !2^z l&#

3@z l~ t i1t!2^z l&#, ~9!

where l denotes the set of nodes belonging to a subreg
and

z l~ t i !5(
rWe l

s rW~ t i ! ~10!

is the average value of the variable in the coarse-grain
regionl, ^dz l

2& is the corresponding variance. The average
Eq. ~9!, is taken overN time steps.

FIG. 9. Evolution of the covariance functionV(t) as a function
of time. Parameter values as in Fig. 5.
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As we have seen in Fig. 6, the oscillations’ amplitude
the coarse-grained variablez l is strongly reduced for a large
system as compared to a smaller one. On the other hand
larger the region, the smaller the variance to the me
^dz l

2&, will be. These two effects counterbalance in the e
pression ofC(t).

In Fig. 10~a!, the time correlation of theX2 coarse-grained
variable is presented for three different values ofl: ~a! L
3L529329, which corresponds to the full lattice~solid
line!; ~b! l 13 l 1528328, which represents one quarter o
the lattice~dotted line!; and~c! l 23 l 2527327, which is one
sixteenth of the lattice~dashed line!. The three curves are
practically identical, which indicates high temporal cohe
ence for the entire system or in a subregion, at the leve
the scaled variablez l /^dz l

2&1/2. Figure 10~b! depicts the
power spectrum associated to the correlation functionC(t).
The system exhibits a single preferred frequency, indep
dently of the size and in accordance with the MF limit cyc
behavior.

FIG. 10. ~a! Normalized time-correlation function ofX2 species
computed for the entire lattice and for two sublattices.~b! Corre-
sponding power spectrum for the large system. Same paramete
in Fig. 5.
9-8
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To investigate further the correspondence between the
and its lattice counterpart, we estimate the oscillation per
for several values ofk1, keeping the other rate constan
equal: The parameters set is chosen for comparison with
solid line of Fig. 4 (k350.8 andk250.4). As can be seen in
Fig. 4, the limit cycle MF period, as obtained by direct int
gration of Eqs.~3!, grows linearly withk1. The system used
in MC simulations has linear sizeL5210 and its dynamical
evolution is recorded over 33104 MC steps, after the system
has reached the steady state oscillatory regime. For la
values ofk1, the system size is too small for appearance
the full oscillatory regime. The MC period of the concentr
tion oscillations is obtained by computing the Fourier tra
form of the time-correlation function. The quantityq ac-
counts for the change in the periodP of the MC oscillations,
with respect to variations in the reaction ratek1,

q5
P2P8

k12k18
. ~11!

In the MC simulations the values ofq have a certain disper
sion about 10%, due to the width of the corresponding pe
in the Fourier spectrum. The MC values ofq are randomly
dispersed around the mean valueq̃511.5 and no genera
tendency ofq is observed with increasing values ofk1. The
value q̃ corresponds to a linear increase ofP with respect to
k1, which is consistent with the mean-field results.

We have also recorded the surface activity~or reactivity
rate! A, which is defined as the number ofreactive events
~i.e., events that have actually changed the lattice config
tion! divided by the total number of attempts~i.e., the total
number of elementary MC steps!. In surface reactions, a re
active attempt will lead to the change of state of a cho
lattice if the local configuration of its neighbors is approp
ate. The substrate restrictions imply that the reactivity rat
not only related to the reaction probabilities. On the contra
in the MF approximation, reactions take place at every ti
step with a prescribed rate. In the definition we adopted,
reactivity A is a global quantity that accounts for all th
elementary reactive events.

In Table I, we observe that the surface activityA is re-
duced whenk1 is increased. This seems to be in contrad
tion to what one would expect, since increase of any of
three reaction constants should favor the lattice reactiv
However, ask1 is getting larger, whilek2 and k3 remain

TABLE I. Oscillation period~in MC units! and surface activity
measured in MC simulations as a function ofk1.

k1 MC period q Activity ~Å!

20 470615 0.0080
25 517620 9.4 0.0071
30 590620 14.6 0.0064
35 633615 8.6 0.0058
40 693630 12.0 0.0052
45 750630 11.4 0.0048
50 815630 13.0 0.0043
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constant, the size that theX2 clusters reach becomes rath
large before reactive steps~2b! and~2c! come into play. The
system is then covered by a few largeX2 clusters and some
isolatedX1. Consequently, the length of the boarderlines b
tween clusters where reactions occur is highly reduced.
inefficiency of the reactive process reflected by the lowA
value is due to the fact that the entire lattice is practica
invaded by one species and that the size of the reactive
tends to zero.

This type of non-MF behavior has already been detec
experimentally@18#. Using scanning tunneling microscop
~STM! visualization techniques, Wintterlinet al. have found
deviations from MF in the CO oxidation on Pt. By recordin
STM images during the reaction of adsorbed oxygen ato
and CO molecules on a small area of Pt~111! ~17 nm3 18
nm! in a pure CO atmosphere, they have observed that
reaction is not taking place randomly but is restricted to
boundaries between Oad and COad domains. By measuring
the rate of disappearance of adsorbed atomic oxygen,
have concluded that the reaction rate is no more given by
usual MF but is, rather, directly proportional to the length
the boundaries.

To further characterize the spatial coherence in the s
tem, we compute the spatial correlation function that is
fined as

C~r!5
1

NLd (
t i51

N

(
rW

s
rW
X2~ t i !s rW1rW

X2 ~ t i !. ~12!

The variables
rW
X2 takes the value 1 or 0, accordingly, as t

lattice siterW contains aX2 particle or not. To evaluate this
function, it is useful to adopt a coarse-grained description
which the lattice is divided along one direction inl slices.
The correlation function is then evaluated for the globals
variable along the chosen direction. Owing to the averag
within each slice one obtains, in this way, a smooth behav

Figure 11 depicts the results of the numerical evaluat

FIG. 11. Spatial-correlation functionC(r) as a function ofr for
a two-dimensional lattice 29329 divided into 512 slices. Same pa
rameters as in Fig. 5.
9-9
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of Eq. ~12! for a 29329 lattice divided in 512 slices. Averag
is taken overN553104 MC time steps. One observes
decrease, which turns out to be exponential, with a cha
teristic correlation length of about 15 lattice sites. This f
ther confirm the persistence of large clusters of homolog
particles. It also fixes the mean intrinsic size of such clus
all along the reactive process.

V. CONCLUSIONS AND PERSPECTIVES

It is now well known that, in many situations, the loc
surface constraints lead to deviations from the usual me
field description. While typical instabilities such as tho
leading to transitions to multiple states are fairly well und
stood from this standpoint, the case of symmetry-break
transitions such as those leading to limit cycle remains
triguing. It is important to understand how the nonlinear d
namics that tends to break down the temporal symmetr
the bulk is affected by the spatial restrictions. In order
understand these aspects, mesoscopic Monte Carlo sim
tions and the macroscopic MF approach need to be comp
in detail.

We constructed a minimal model that is tractable at
MF level and may be directly implemented in the latti
simulations. This allows to study thegeneric aspectsof com-
plex dynamical behavior associated with the limit cycle.
our work, the incidence of the kinetics is thus studied ind
pendently of other factors whose influence will be cons
ered in subsequent investigations. This representative m
is not related to a specific surface reaction, but contains
necessary complexity to generate the desired phenomen

The LLC model describes an open reactive system un
nonequilibrium conditions. The reactive scheme involves
sorption, desorption, and reaction steps, under the cond
that the total number of on-lattice interacting particles p
the empty lattice sites be conserved throughout the proc
In the MF description LLC is a dissipative system. For
large range of parameter values all the phase space traj
ries sink into a limit cycle; the MF concentrations oscillate
time with constant amplitude. The amplitude and the per
of the oscillations depend only on the various system par
eters.

When the LLC model is realized on a lattice, the pictu
changes radically. On square lattice~2D!, clustering of ho-
mologous particles is observed and local oscillations app
The lattice is divided into subregions that oscillate in pha
while distant oscillating subregions are out of phase. Con
quently, for large enough systems, the local oscillators
active while the global oscillations are suppressed. The
velopment of the local oscillations is attributed to excitatio
of random lattice sites due to local fluctuations. These e
s
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tations propagate with rates depending on the system pa
eters and on the lattice characteristics.

From preliminary investigations, the frequency and a
plitude of the local oscillations depend not only on the p
rameters of the system but seem to depend strongly on
local properties of the lattice~average number and distribu
tion of nearest neighbor sites!. A first extension of the presen
work would be the realization of the reaction scheme
hexagonal lattice, where the immediate neighborhood c
tains exactly four sites, the same exact number of sites
quired for the multiparticle reaction step~2a!. Also, of inter-
est would be the LLC realization on a lattice with local
variable number of nearest neighbors. The coupling betw
the dynamics generated by a minimal model such as the L
with transitions between lattice geometries would also
worth investigating, since in some experimental situatio
transformations between different support geometries are
served@16#.

A second direction extending the present work would
to investigate the role played by diffusion and its interferen
with the oscillatory behavior. Two opposite situations cou
happen. Diffusion could lead to the homogenization of t
reactants distributions or, on the contrary, favor the spon
neous clustering of homologous particles. A deep und
standing of transport processes on restricted supports
quires careful modeling of diffusion at the microscopic lev
In some cases, the mobility of the reactants may be mod
as an activated process associated with the jump of part
from on site to one of its nearest neighbors. In other sit
tions, all the particles belonging to a surface ‘‘bath’’ cou
move synchronously.

Our results confirm further the idea that the support m
modify the MF behavior both statically and dynamicall
Representative low-dimensional models, which exhibit co
plex phenomena at the MF level, will help us to construc
complete picture of the effects of restriction of dynamic
reactive processes on low-dimensional supports. In this
spect, the case of complex oscillations and chaos is of spe
interest.
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